Multi-objective optimization perspectives on reinforcement learning algorithms using reward vectors
نویسنده
چکیده
Reinforcement learning is a machine learning area that studies which actions an agent can take in order to optimize a cumulative reward function. Recently, a new class of reinforcement learning algorithms with multiple, possibly conflicting, reward functions was proposed. We call this class of algorithms the multi-objective reinforcement learning (MORL) paradigm. We give an overview on multi-objective optimization techniques imported in MORL and their theoretical simplified variant with a single state, namely the multi-objective multi-armed bandits (MOMAB)
منابع مشابه
Multi-objective reinforcement learning using sets of pareto dominating policies
Many real-world problems involve the optimization of multiple, possibly conflicting objectives. Multi-objective reinforcement learning (MORL) is a generalization of standard reinforcement learning where the scalar reward signal is extended to multiple feedback signals, in essence, one for each objective. MORL is the process of learning policies that optimize multiple criteria simultaneously. In...
متن کاملLow-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach
This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...
متن کاملInteractive Thompson Sampling for Multi-objective Multi-armed Bandits
In multi-objective reinforcement learning (MORL), much attention is paid to generating optimal solution sets for unknown utility functions of users, based on the stochastic reward vectors only. In online MORL on the other hand, the agent will often be able to elicit preferences from the user, enabling it to learn about the utility function of its user directly. In this paper, we study online MO...
متن کاملMulti-Objectivization in Reinforcement Learning
Multi-objectivization is the process of transforming a single objective problem into a multi-objective problem. Research in evolutionary optimization has demonstrated that the addition of objectives that are correlated with the original objective can make the resulting problem easier to solve compared to the original single-objective problem. In this paper we investigate the multi-objectivizati...
متن کاملA Geometric Approach to Multi-Criterion Reinforcement Learning
We consider the problem of reinforcement learning in a controlled Markov environment with multiple objective functions of the long-term average reward type. The environment is initially unknown, and furthermore may be affected by the actions of other agents, actions that are observed but cannot be predicted beforehand. We capture this situation using a stochastic game model, where the learning ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015